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ABSTRACT-The Galerkin method is applied to a pair of functions. It is demonstrated that this system can be 
linear and then nonlinear primitive (wave) equations. efficiently solved by an implicit method. Numerical 
This results in a system of ordinary differential equations. examples show that integration using the Galerkin method 
Procedures are included for generating the coefficient is more efficient than the corresponding finite-difference 
matrices of the system of ordinary differential equations method with central differences in space. 
when piecewise Hermite cubic functions are used as basis 

1. INTRODUCTION 

Finite-difference techniques have long been the stand- 
ard method of numerically solving meteorologically 
related boundary value and mixed initial and boundary 
value problems. A review of many commonly used schemes 
was given by Kurihara (1965) and later by Grammeltvedt 
(1969). On the other hand, numerical methods based on 
the variational formulation of th'e physical problem have 
emerged in recent years as strong competitors to the 
kite-difference methods. Especially, a renewed interest 
in the Galerkin (1915) approximation has been kindled by 
the establishment of rigorous error bounds for such 
approximations (Varga 1970, Price and Varga 1970, 
Swartz and Wendroff 1969) coupled with recent develop- 
ments in spline functions (Ahlberg et  al. 1967) and piece- 
wise Hermite polynomials functions (Birkhoff et al. 1968). 
I n  a recent paper, Douglas and Dupont (1970) established 
error bounds for a number of numerical schemes when the 
Galerkin method is applied to a -  system of parabolic 
equations. These error bounds were established for both 
linear and nonlinear problems. I n  this paper, we apply the 
Galerkin method to a pair of first-order, quasi-linear 
hyperbolic wave equations. ' 

I n  the first part of the paper, we present a detailed 
discussion of the Galerkin method and the means of 
implementation for the linear wave equations. The re- 
sulting system of ordinary differential equations is solved 
by the Crank-Nicolson implicit method (Kurihara 1965). 
The results are compared to the exact solution and to 
results using the corresponding implicit finite-difference 
scheme. The implementation of the boundary conditions 
for the Galerkin procedure will also be demonstrated. In 
the second part of the paper, the Galerkin procedure for 
the nonlinear wave equations is discussed. A numerical 
example is presented and compared to finite-diff erence 
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solutions. The aim of this paper is to show the relative 
merits of the Galerkin method versus the finite-difference 
method in solving the problem of wave propagation when 
the same time differencing scheme is used in both 
computations. 

2. PHYSICAL MODEL 
AND GOVERNING EQUATIONS 

The physical system to be considered initially is one 
dimensional and composed of a single homogeneous layer 
of fluid that is in hydrostatic equilibrium. The set of 
governing differential equations is 

and (1) 
ah' aut ah' 
a t  ax ax -+h' -+u' -=O O<X<L 

where u' represents the fluid velocity in the x direction, 
h' represents the depth of the fluid, and g is the gravity 
constant . 

If we employ the standard perturbation approximations 
and if we neglect the advection terms, eq (1) reduce to 

au ah -+g -=o a t  ax 
and 

where H is the mean depth of the fluid and u and h are 
the perturbation quantities. To obtain a solution to 
eq (2), we must specify initial values, u(s,O) and h(x,O). 

Proper boundary conditions for this set of equations 
require specification of either u or h or their derivatives 



a t  x=O and x=L. For example, the rigid wall condition is 

u(0, t)=u(L, t ) = O .  (3) 

When using finite-difference methods for solving eq (2) 
with the boundary conditions in eq (3), one must take 
special care in evaluating h on the boundary. Moretti 
(1969) has recently discussed this problem. To avoid 
this inconvenience, one can employ the periodic condition. 
This takes the form 

u(2, t)=u(z+L, t )  

h(z, t )  = h(x+L, t ) .  
and 

It is shown in the next section that no boundary problem 
arises when the Galerkin method is used. We discuss 
methods of numerically solving eq (2) in sections 3-5. I n  
sections 6 and 7, numerical solutions to eq (1) are 
discussed. 

3. THE GALERKIN METHOD 

a. A Variational Formulation 

We shall describe a variational form of eq (2). Let S be 
the space of all real-valued, piecewise, continuously 
differentiable functions, v ( z ) ,  on 10, L]. Multiply eq (2) by v 
and integrate from 0 to  L with respect to  x, obtaining 

and ( 6 )  1 L ( , t+Hg)vdx=O.  ah 

The above equations should be satisfied a t  each time t>O 
and for any arbitrary function veS. In addition, the initial 
condition should also be satisfied. (The implementation of 
boundary conditions will be discussed in subsection 3d.) 
This is a variational formulation of eq (2). The variational 
equations require that the solutions be subject to the same 
restriction as the test function v ;  that is, they belong to 
the space S. Any approximate solution to eq (6) will be 
an approximate solution to eq (2). A more detailed theoret- 
ical discussion on variational methods is given by Mikhlin 
(1964). 

b. Galerkin Approximation 

The Galerkin method approximates the solution to  eq 
(6) and can be described as follows. First, choose a finite- 
dimensional subspace SzN of S. Replacing u(z,t) and 
h(x,t) in eq (6) by U(x,t)  and P(z,t), we obtain the 
Galerkin equations, 

and (7) 

for t 2 0  and all veSZN. Here, U and P are the Galerkin 
approximations to u and h for each time t 20 ,  and they 
are elements of 82,. 

Let v l ( x ) ,  v2 (x ) ,  . . . , vzN(x )  be a basis for SzN. Then, 
for any time t>O, U(z,t) and P(x,t) can be expressed as 

respectively. Equations (7) will be satisfied for all veSZN 
if they are satisfied for v=vl, vzl . . ., vZN.  By substituting 
eq (8) into (7), these 4 N  relations are transformed into 
the following 4N equations: 

2N 

Z J  dt i= l  
and (9) 

at 2 v,dx=O 

where j=1, 2, . . ., 2N. We can write eq (9) in matrix 
notation as 

C dB -+HAcu=O 
a t  

where C and A are 2NX2N matrices for which ( i , j )  
elements, Ci, and Ai.,. are, respectively, 

and 

and a and /3 are 2N-dimensional column vectors with 
transposes 

and 

respectively. 
We note that the Galerkin method has transformed the 

original partial differential equations into a system of 
ordinary differential equations [eq (lo)] in the coefficients 
of the basis functions. For each partial differential equa- 
tion, there is a system of 2N ordinary differential equations 
associated with 2N basis functions. Before we can solve 
eq (lo), they must be complemented by the initial values 
a(0) and p ( 0 ) .  These initial values can be obtained by 
projecting u(x,O) and h(x,O) into S,; that is, by solving 
the following equations: 

aT=(aI, a2, . . . , aZN) 
@'=(PI, P z ,  . . . 1 P Z N ) l  

E "p  (0)v  fv,dx = h( x,O) v,dx 
i = l  0 

where j =  1, 2, . . ., 2N, or in matrix notation 
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and 

hz C=- 
420 

Ca(O)=q 

CP(0) = s 

( 2  1 3 )  ($2 0 )  (y-13) 

-13-3h 0 8h 13-3h 

( 1 3 )  [$ 0 )  (?-13) 
-13-3h 0 8h 13-3h 

(13) 

where the j t h  component of q is qr= u(x,O)vjdx and 

kth component of s is s k =  h(x,O)v,dx. Each equation of 

eq (13) has a unique solution since C is positive definite. 
When q is not easily obtained by integration or u(x,O) is 
only given a t  r discrete points, then a(0 )  can be obtained 
by solving the following least-squares problem of mini- 
mizing the expression 

so” 
LL 

The value p(0 )  can be obtained in a similar manner. We 
shall leave the theoretical discussion here except to  note 
that convergence of U to u or P to h has been established 
in the literature by Swartz and Wendroff (1969) among 
others. Unfortunately, the nonlinear primitive equations 
are not covered by Swartz and Wendroff (1969). 

c. Numerical Procedure 

To solve eq (10) numerically, we must first choose a 
basis for SzN. Trigonometric functions have been widely 
used for such a purpose. Recently, Orszag (1970) used 
such functions as the basis functions when he applied the 
Galerkin method to the Navier-Stokes equations for in- 
compressible flow. In  recent years, spline functions have 
become popular in such applications. Spline functions are 
piecewise polynomials. For instance, Douglas et al. (1969) 
used cubic splines in their application of the Galerkin 
method to solve a petroleum engineering problem. Cubic 
splines have the advantage of being easily differentiable 
and integrable, and they usually render the matrices C 
and A in eq (10) very sparse. Hermite cubic functions are 
chosen for this study. 

Yirst, choose a partition of the region [0, L]; that is, 

o=x1<x2<x3<. . . <x”=L. 

Then, at  each node, x,, introduce two functions 

r i 1 4 2  ( $ 5 ) ” 3  r+l-X.  (=I. Xi+l--X’ )2+1, X€[Xi, X i + J  (15) 

and 

The detailed derivation of these functions can be found in 
Goel (1968). We note that both functions are identically 
zero except in the interval (xt+ x r + J .  It is this property 
that causes the resulting matrices, C and A, to be ex- 
tremely sparse. The values and first derivatives of these 
basis functions are continuous across the nodes. We also 
note that v2,-1 has value one and first derivative zero at  
xi while vzi has value zero and first derivative one there. 
These are indeed the criteria used in deriving the functions 
in the first place. It is important to note that both C and 
A are constant matrices; therefore, they need only to be 
generated once at  the beginning. They are very simple 
to generate. For instance, if we subdivide the region 
(0 ,  L)  into three equal subregions and let h=x,+l-xt, 
then N=4,  

( 13)(  -22)- 

-13-3h -22 4h 

(17) 
and 

1 A=- 
60 

-30 6h 30-6h 
(-6h 0 )  (6h-h2) 
-30-6h 0 12h 30 -6h ( 6h hZ)  (-12h 0 ) (6h -hz) 

-30-6h 0 12h 30-61% ( 6h h 2 )  (-12h 0 )  (6h-h2) 

1 
We see that both C and A are in block tridiagonal form 
with each block being a 2 x 2  matrix. We see also that 
the 2 x 2  blocks are repeated along its diagonals except 
the first and last blocks on the main diagonal. Hence, 
both C and A are very easy to generate. Furthermore, 
we can easily scale the matrices such that the elements 
of each matrix are of the same order of magnitude simply 
by multiplying the basis functions vzf by h-’. 

Any standard numerical technique can be employed to 
solve the systems of ordinary differential equations 
[eq(lO)]. We chose the Crank-Nicolson method or the 
trapezoidal implicit method (Kurihara 1965). Let the 
superscript denote the time step; then the difference 
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equations can be written TABLE 1.-Ratio of cr to c 

and 

We have purposely written the above equations in terms 
of the differences of variables a t  two time steps to reduce 
the roundoff errors. We can rearrange the equations and 
variables in eq (19)  so that the coefficient matrix is in 
block tridiagonal form with each block being a 4 x 4 
matrix. If we use the Gaussian elimination method to 
solve the final system, then the forward elimination phase 
need only be done once a t  the first time step. For each sub- 
sequent time step, one needs only to solve a decomposed 
system. This calculation requires only 44CN-1) multipli- 
cations and additions. 

d. Implementation of Boundary Conditions 

We have not yet discussed the means of implementing 
the boundary conditions. Recall that for each of the orig- 
inal partial differential equations there is one ordinary dif- 
ferential equation associated with each basis function, vr, 
for i=1 ,2 ,  . . . , 2 N .  To set u a t  the left-hand end 
(x=q=O), we replace the equation that comes from 

l (ut+gh,)vl(x)dz=O (20)  

by 
a1( t )  =u(O, t ) .  

0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  
. 8  
. 9  

1. 0 
1. 1 
1. 2 

0.000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 
. 000 

0. 930 0. 995 
. 927 . 994 
. 922 . 992 
. 915 . 990 
. 906 . 987 
.895  .984 
.884  .980  
.871  . 975 
. 857 . 970 
.842  .964  
. 827 . 958 
.812  . 952 

0. 999 
.998 
.998  
. 997 
. 995 
. 994 
. 992 
.990  
. 987 
.985  
. 982 
. 979 

1.000 1.000 1,000 
0.999 1.000 1.000 
.999 0.999 1.000 
. 998 . 999 0. 999 
.998  .999  .999  
.997 .998  .999  
. 996 . 997 . 998 
.994  .997 .998  
. 993 . 996 . 997 
. 992 .995 .996 
. 990 . 994 . 996 
. 988 . 992 . 995 

4. FINITE-DIFFERENCE METHOD 

The Crank-Nicolson method applied to eq (2), using 
fourth-order central differences to approximate the 
spatial derivatives, takes the form 

G7At 
2 

h,"+l-p HAt 

u;+' -u;+ >-- (D,h;+' + DzhT) = O  

and (27)  
, +T (Dzu;+'+D,u;)=0 

where n and j are the positions on the time and space 
coordinates, respectively, and D ,  is the fourth-order 
central difference operator with the following effect on the 
operand, f,: 

2 1 
Dzfiz3% ( f i + l - f i -  1 )  -- (f i + ~ - f i - 2 >  Likewise, to set u a t  the right-hand end (z=xN=L), we 

simply replace the equation that comes from 
1 ~ A X  

The use of the fourth-order approximation results in eq 
(22)  (27) having order of accuracy comparable with the 

Galerkin approximation found by the cubic Hermite 

We shall determine the amplitude and phase character- 
istics of the difference equations [eq ( 2 7 ) ] .  Let u and h 
have the elementary solutions 

[ ( u t  + ghz)VzN- h = o  

a 2 N -  * ( t )  = u (-& t ) .  (23)  

If, instead, the slope of height were specified a t  the left 
end, then we would replace the equation that comes from 

by functions. 

(24 )  and 

where R is the amplification factor, k is the frequency, 
and y is the wave number. Substituting eq (28)  into (27) 
and satisfying the vanishing of the determinant of the 
coefficients for the existence of nontrivial solutions for 
uo and ho results in the expression, 

by 
ah 

@ 2 ( r ) = z  ( O A .  (25)  

Conditions (21)  and (23)  can be realized in system (19a) 
by replacing its first and next-to-last equations by 

a:+l(t)-a:(t)=U(O, t)-a?(t)  f26a) 
and 

respectively . is the true phase speed. We note that R = l  in 
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eq (29). This means that eq (27) is neutral with respect to 
amplification of waves. The computed phase speed can be 
defined as 

k c --. 
Y 

1- 

From eq (29), this quantity can be expressed as 
1 2-aq c -- arctan -2-2- ' -7At  1--a p 

TABLE 2.-Experiments performed to compare the Galerkin and 
finite-difference merhods 

Galerkin method Finite difference method 
No. of basis functions 

(time step in min) 
No. of mesh points 
(time step In min) 

Table 1 shows the values of c,/c for different values of 
wave number, y, and mesh ratio, -a. 

5. COMPARISON OF NUMERICAL RESULTS 

A number of numerical experiments were carried out 
(table 2) using the following initial conditions: 

2nrx 
L u(x, O)=Uo sin ~ 

(32) and 
h(s, 0)=H=9.184 km 

where r is an integer, Uo is the amplitude, and L=10,500 
km. We further use the periodic condition given in eq (4) 
and (5). 

Using eq (32) and periodic conditions, we obtain the 
exact solution to eq (2) in the form of a standing wave; 
that is, 

HUo 2nrx . 2nrct 
G L L h(x,  t)=H-- COS - SLZ~ __ 

Initial condition I 6(30, 10) 12(10. 2.5) 
15(10, 2.5) Ua=54.6 m/s 12(10, 2.5) 

r = l  18(5, 1.25) !24(5, 1.25) 
15(10. 2.6) 10 (IO. 2.5) Initial condition I1 

U ~ 2 7 . 3  mls 18(5, 1.25) N(2.6,  0.625) 
r=2 a ( 2 . 5 ,  0.625) 45(1.25, 0.3125) 

and 
2nrx 2xrct cos -* L u(x, t)=Uo sin __ L 

(33) 

This solution is the standard against which numerical 
solutions of eq (2) will be compared. Numerical compu- 
tations are performed using eq (19) and (27). The use of 
the periodic conditions changes the form of the matrices, 
C and A, in eq (10). They are no longer in block-tridiagonal 
form. For instance, if N = 4 ,  

1 C=- 
420h 

where scaling on vzf by h-' is assumed. 
We can easily rearrange the equations and variables in 

eq (19) so that the final coefficient matrix is of order 4 N  X 
4 N  and is in the form given in eq (34) with 4 X 4 blocks. To 
solve such a system using the Gaussian elimination method, 
one must make approximately 76 (N-2) multiplications 
and additions after the initial time step. The matrix re- 
sulting from finite-diff erence implicit equations [eq 27)] 
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is in almost block-penta-diagonal form with 2 X 2 blocks. 
To solve such a system, one must make approximately 34 
(p-4) multiplications and additions for a general time 
step, where p is the number of spatial mesh points. The 
total energy of eq (2) is conserved and is given by 

(35) 

The available energy in the model is defined as 

(36) 
1 
2 A E= E -- LgH2. 

The total energy for the Galerkin method, E,, can be ex- 
pressed as a function of a and @ by substituting eq (8) 
into (35). The result is the scalar product, 

where E(a) is a matrix with (i, j )  element 

and where 
L 

@ k i j = L  VkViVjdX. (39) 

Therefore, the available energy for the Galerkin calcula- 
tion can be checked by the evaluation of the quantity 
E,- 112 LgH 2. For the finite-difference calculations, the 
available energy is estimated by using the expression 

(40) 
- 1 Ax ~iu:+g(hi--lir)z] 
2 i  

where the summation is over all the computation points. 
The available energies for all the cases listed in table 2 

are conserved to within 0.1 percent. To  facilitate the com- 
parison of the methods, we computed the maximum error 
in height a t  each time step for all the cases. For the finite- 
difference method, this error is 

e;=maxlh(jAx, nAt) -@I. 
i 

For the Galerkin method, the maximum error may be 
written 



In  the experiments, we estimated En by selecting the 
maximum absolute value among the errors evaluated at  
200 equally spaced points. In  addition, the maximum error 
of the derivative of height, 

is also estimated a t  each time step. 
Tables 3 and 4 show the maximum errors in height 

normalized by the average height, E, at 5-hr intervals. 
Invariably, for all the cases shown, a periodic nature of 
e; is observed with a period equal to  the true period of 
the solution. The true periods of the solutions are 10 hr 
for initial condition I and 5 hr for initial condition 11, 
respectively. The error, e;, has a relative maximum at 
each half period. We can explain the periodic nature of 
e; as follows: the main error in these calculations is the 
truncation error in time, and this error is proportional 
to the third derivative, d3h/dt3, for a method correct to 
second order. 

The behavior of E" has a similar periodic character 
when the time step used is large, such that the truncation 
error in time is dominant. However, when the time step 
is reduced, the error due to initial projection plus the 

TABLE 3.-Errors using the finite-difference method, ef/H, for init ial  
condition I 

12 mesh points 15 mesh points 24 mesh points 

time step (rnin) time step (min) time step (min) 
10 2.5 10 2.5 5 1.25 

Hr ~ _____ _ _ _ ~  ________ 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

1.840-3' 
3.680-3 
5.520-3 
7.360-3 
9.190-3 
1.100-2 
1.290-2 
1.470-2 
1.650-2 
1.840-2 
2.020-2 
2 . 2 0 0 - 2  

1.370-3 
2.740-3 
4.110-3 
5.480-3 
6.850-3 
8.220-3 
9.590-3 
1.100-2 
1.230-2 
1.370-2 
1.510-2 
1.640-2 

1.090-3 
2.190-3 
4.280-3 
4.380-3 
5.470-3 
6.560-3 
7.660-3 
8.750-3 
9.850-3 
1.09D-2 
1.200-2 
1.310-2 

6.070-4 
1.210-3 
1.820-3 
2.430-3 
3.030-3 
3.640-3 
4.250-3 
4.850-3 
5.460-3 
6.070-3 
6.670-3 
7.280-3 

2.170-4 
4.340-4 
6.570-4 
8.680-4 
1.080-3 
1.300-3 
1.520-3 
1.740-3 
1.950-3 
2.170-3 
2.390-3 
2.600-3 

9.560-5 
1.910-4 
2.870-4 
3.820-4 
4.780-4 
5.730-4 
6.690-4 
7.640-4 
8.600-4 
9.550-4 
1.050-3 
1.150-3 

TABLE 5.-Errors in Galerkin approximation, En/H, for initial 
condition I 

6 basis functions 12 basis functions 18 basis functions 

time step (min) time step ( m i d  time step (rnin) 
30 10 10 2.5 5 1.25 

_____ ~ _ _ _ _ ~  Hr 

_____ 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

4.610-3 
9.070-3 
1.380-2 
1.810-2 
2.300-2 
2.710-2 
3.200-2 
3.620-2 
4.090-2 
4.520-2 
4.980-2 
5.400-2 

~ 

1.750-3 
1.930-3 
2.000-3 
2.100-3 
2.550-3 
2.710-3 
3.220-3 
3.430-3 
3.900-3 
4.290-3 
4.770-3 
5.140-3 

5.500-4 
9.850-4 
1.610-3 
2.040-3 
2.600-3 
3.140-3 
3.680-3 
4.200-3 
4.620-3 
5.200-3 
5.720-3 
6.180-3 

2.910-4 
2.130-4 
2. 500-4 
2.810-4 
2.650-4 
2.600-4 
2.490-4 
2.920-4 
3.100-4 
3.200-4 
3.630-4 
3.590-4 

1.480-4 
2.710-4 
3.990-4 
5.350-4 
6.500-4 
7.960-4 
9.220-4 
1.050-3 
1.190-3 
1.300-3 
1.450-3 
1.570-3 

8.060-5 
9.960-5 
7.320-5 
1.010-4 
6.650-5 
6.940-5 
9.050-5 
9.060-5 
9.650-5 
8.730-5 
9.830-5 
9.440-5 

TABLE 6.-Errors in Galerkin approximation, En/H, for initial 
condition 11 

10 basis functions 18 basis functions 

time step (rnin) time step (min) time step (min) 
10 2.5 5 1.25 2.5 0.625 

24 basis functions __ ____ Hr _________ 

5 
10 
15 
M) 
25 
30 
35 
40 
45 
50 
55 
60 

1.890-3 
3.730-3 
5.640-3 
7.470-3 
9.400-3 
1.120-2 
1.320-2 
1.490-2 
1.690-2 
1.860-2 
2.060-2 
2.230-2 

1.670-3 
1.640-3 
1.690-3 
1.690-3 
1.730-3 
1.720-3 
1.760-3 
1.750-3 
1.800-3 
1.790-3 
1.830-3 
1.820-3 

5.670-4 
1.020-3 
1.570-3 
2.040-3 
2.000-3 
3.060-3 
3.600-3 
4.070-3 
4.640-3 
5. 100-3 
5.630-3 
6.100-3 

2.830-4 
2.790-4 
3.020-4 
2.480-4 
3.050-4 
2.590-4 
2.950-4 
2.820-4 
3.050-4 
3.040-4 
2.800-4 
3.170-4 

1.440-4 
2.520-4 
4.090-4 
5.170-4 
6.110-4 
7.540-4 
9.170-4 
1.030-3 
1.120-3 
1.250-3 
1.430-3 
1.550-3 

8.540-5 
1.390-4 
1.340-4 
9.160-5 
1.090-4 
1.430-4 
1.300-4 
8.810-5 
9.210-5 
1.460-4 
1.230-4 
1.040-4 

dEn 
( m a z  ah/axl' TABLE 7.-Errors i n  Galerkin approximation, 

for initial condition I 

6 basis functions 12 basis functions 18 basis functions 

time step (min) time step (rnin) time step (min) 
30 10 10 2.5 5 1. 25 

Hr __ _______ ____________ 

5 6.320-2 6.140-2 8.960-3 1.790-2 5.780-3 5.970-3 
10 7.280-2 5.760-2 1.700-2 1.390-2 7.020-3 7.210-3 

, 15 8.640-2 6.080-2 1.720-2 1.600-2 5.280-3 5.510-3 
*1.840-3=1.84X10-3. ' ' 20 1.080-1 6.340-2 1.830-2 1.730-2 8.060-3 7.390-3 

TABLE 4.-Errors using the finite-difference method, ey/H, for initial 
condition IZ 

15 mesh points 30 mesh points 45 mesh points 

time step (min) time step (rnin) time step (rnin) 
10 2.5 2. 5 0.625 1.25 0.3125 

Hr _______ __ 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

1.060-2 
2.110-2 
3.120-2 
4.100-2 
5.030-2 
5.890-2 
6.670-2 
7.370-2 
7.970-2 
8.470-2 
8.860-2 
9. 140-2 

8.750-3 
1.740-2 
2.590-2 
3.420-2 
4.220-2 
4.990-2 
5.700-2 
6.370-2 
6.990-2 
7.540-2 
8.030-2 
8.450-2 

7.040-4 
1.420-3 
2.110-3 
2.820-3 
3.520-3 
4.220-3 
4.930-3 
5.630-3 
6.340-3 
7.040-3 
7.740-3 
8.450-3 

5.820-4 
1.160-3 
1.750-3 
2.330-3 
2.910-3 
3.490-3 
4.070-3 
4.660-3 
5.240-3 
5.820-3 
6.400-3 
6.980-3 

1.470-4 
2.940-4 
4.410-4 
5.870-4 
7.340-4 
8.810-4 
1.030-3 
1.170-3 
1.320-3 
1.470-3 
1.620-3 
1.760-3 

1.160-4 
2.330-4 
3.490-4 
4.650-4 
5.810-4 
6.970-4 
8.140-4 
9.300-4 
1.050-3 
1.160-3 
1.280-3 
1.390-3 

25 
30 
35 
40 
46 
50 
55 
60 

1.220-1 
1.480-1 
1.720-1 
1.970-1 
2.210-1 
2.460-1 
2.690-1 
2.930-1 

6.240-2 
6.430-2 
6.400-2 
6.520-2 
6.560-2 
6.610-2 
6.720-2 
6.700-2 

2.080-2 
2.280-2 
2.860-2 
2.770-2 
3.060-2 
3.160-2 
3.270-2 
4.010-2 

1.670-2 
1.610-2 
1.450-2 
1.760-2 
1.820-2 
1.340-2 
1.580-2 
1.780-2 

7.100-3 
8.310-3 
9.070-3 
6.900-3 
9.140-3 
8.420-3 
1.100-2 
1.210-2 

4.840-3 
6.820-3 
6.540-3 
6.620-3 
7.030-3 
4.670-3 
7.220-3 
5.480- 3 

roundoff error become important. As a consequence of 
this, En behaves randomly as shown by column 5 in 
table 5.  In  any case, the errors listed in tables 5-8 are 
the maximums encountered during the 5-hr time segment 
ending a t  the particular hours indicated in the left 
column. Tables 7-8 show the error, dE", normalized by 
the maximum value of ahlax. 

It is obvious from these experiments that the Galerkin 
approximations are much more accurate than the finite- 
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dEn 
lmax ah/dxl ' TABLE 8.-Errors in Galerkin approximat on, 

for initial condition ZI 

10 basis functions 18 bash functions 24 basis functions 

Time step (mid  Time step (min) Time step (min) 
10 2.5 5 1.25 2.5 0.625 

Hr ___ ________ and 

for which the (i, j )  elements are 

6 1.18 D-1 1.16 D-1 
10 1.27 D-1 1.15 D-1 
15 1.30 D-1 1.16 D-1 
20 1.38 D-1 1.14 D-1 
25 1.45 D-1 1.17 D-1 
30 1.62 D-1 1.15 D-1 
36 1.78 D-1 1.18 D-1 
40 1.94 D-1 1.15 D-1 
45 2.10 D-1 1.19 D-1 
50 2.25 D-1 1.16 D-1 
66 2.40 D-1 1.19 D-1 
60 2.69 D-1 1.17 D-1 

2.76 0 - 2  
3.04 0 - 2  
2.60 0 - 2  
3.12 0 - 2  
3.87 D-2- 
3.78 0 - 2  
4.35 0 - 2  
4.89 0 - 2  
5.67 0 - 2  
5.60 0 - 2  
6.58 0 - 2  
6.79 0 - 2  

2.68 0 - 2  1.07 0 - 2  1.07 0 - 2  
2.64 0 - 2  1.75 0 - 2  1.72 0 - 2  
2.79 0 - 2  1.79 0 - 2  1.68 0 - 2  
2.38 0 - 2  1.45 0 - 2  1.01 0 - 2  
2.84 0 - 2  1.16 0 - 2  1.13 0 - 2  
2.47 0 - 2  1.83 0 - 2  1.76 0 - 2  
2.74 0 - 2  2.04 0 - 2  1.63 0 - 2  
2.59 0 - 2  2.00 0 - 2  9.64 0 - 3  
2.78 0 - 2  1.48 0 - 2  1.19 0 - 2  
2.70 0 - 2  1.90 0 - 2  1.78 0 - 2  
2.50 0 - 2  2.27 0 - 2  1.68 0 - 2  
2.83 0 - 2  1.51 0 - 2  9.23 0 - 3  

difference results for the same amount of computing 
effort. If we adopt Grammeltvedt's (1969) criterion that 
15 mesh points per wavelength are required to describe 
adequately the wave of interest, then a comparable 
accuracy can be obtained by only six basis functions 
with the Galerkin method. We also notice that reduction 
of time step has a greater effect on the Galerkin method 
than on the finite-difference method. 

It appears that, to achieve a required accuracy, one 
should use a minimum number of basis functions com- 
bined with a time step small enough such that the round- 
off error just starts to dominate. 

6. GALERKIN METHOD APPLIED 
TO NONLINEAR EQUATIONS 

The Galerkin equations for the nonlinear wave equations 
[eq (l)] are (for j=l ,  2, . . ., 2N) 

+g E L L O l  2 v,dx=O (41a.) 
t = l  

and 

If we let 

then eq (41) may be written in the matrix notation 
C $+B(a)a+gAp=O 

and (43) c da  ~+B(")p+B("a=O 

where matrices C and A are the same as those defined in 
the linear case; and where B(a)  and B(@) are matrices 

(44) 

Again, the Galerkin method has transformed the original 
partial differential equations into a system of ordinary 
differential equations. Since the matrices B(a)  and B(p) 
depend on a or p,  eq (43) are nonlinear. Using the Crank- 
Nicolson method in discretizing the time domain and 
writing the equations again in terms of the differences of 
variables a t  two time steps, we have 

=-AtB ( an+'+an ) an-AtgApn 

and (45) 

,[C+: B (pn+l-pn) 

an+'+ an =-AtB vnY) an-AtB ( ) p". 

Equation (45) is a system of nonlinear algebraic equations. 
If we use Hermite cubic functions as basis functions, 

the matrix B again has the block tridiagonal form with 
2 X 2 blocks the same as the form of matrices C and A. 
But, unlike C and A, B needs to be recomputed at  each 
time step because of its dependence on a or p.  The 
computation of B is also more complicated than the 
computation of C and A since integrals of triple products 
of basis functions and their derivatives [eq (42)] need to 
be evaluated first. Then, an inner product [eq (44)] has 
to be computed for each nonzero entry of B. Fortunately, 
we do not have too many integrals of triple products to 
evaluate; most of them are zero since each basis function 
has a nonzero value only in two neighboring subregions. 
In  fact, for any node, x,, eq (42) may be written as 

where we note from figure 1 that the maximum difference 
of any two indices of the triple product is three. There are 
exactly 40 different integrals to evaluate for each term 
on the right side of eq (46). These integrals need only be 
evaluated once. On the other hand, eq (44) has to be 
evaluated repeatedly every time step for every nonzero 
element of B. Since, however, only six terms enter into 
the inner product [eq (44)], evaluation of B is not a major 
computational effort. 

To avoid solving nonlinear algebraic systems of equa- 
tions, we use the following predictor-corrector approxi- 
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This extrapolation scheme requires a special starting 
procedure since it involves values on three time levels. 
Douglas and Dupont (1970) proved that for parabolic 
eauations both the predictor-corrector and the extmp- 

FIGURE 1.-Hermite cubic basis functions for the subregion olation schemes retain the second-order accuracv ir: 
time of the original Crank-Nicolson-Galerkin method. &I, ~ i + l ) ,  where the node spacing is unity. 

mation to eq (45) (Douglas and Dupont 1970) : 

Predictor 

[.+$ B(a")] (E"+'-an)+y gA(@ -0") 

7. NONLINEAR NUMERICAL RESULTS 

In  the numerical example given below, we again use the 
periodic condition for comparison with the finite-difference 
results free from boundary effects. For the Galerkin cal- 
culation, we use the predictor-corrector formula [eq (47)] 
for the first time step and the extrapolated formula [eq 
(48)l for subsequent time steps. For the finite-difference 

and (47a) calculation, we use the predictor-corrector formula of 

At -n+l 

= -AtB(a")a"-AtgAB" 

- B(O")(Z"+'-an)+[C+$ B(an) (0 +-p) 
At 
2 1 -n+l 

Gourlay and Morris (1968) except that fourth-order finite 
differences are used to approximate auldx and ahlax. 

= -AtB(Bn)a"-AtB(a")@". These are: 

Corrector Predictor 

(h:+ 1 + hl- -At (h;Dzuq+ U; Dzh;). 
an+'+a" h*n+l=- 1 

' 2  =-At B (- ) a"-Atg Ap" 

(47b) corrector and 

- - P"+'+B" ="+I- n 
=-AtB( ) a " - A t B (  " ) p " .  

We note that the predictor-corrector requires the solution 
of two sparse 4NX4N linear algebraic systems for each 
time step. 

Douglas and Dupont (1970) also cqnsidered another 
procedure that requires the solution of only one system of 
algebraic equations. They called this procedure Crank- 

At un+l t --ui - - - 2 I] u;LDZu; + gD& + uF+'D,u; + I +  yD& + I] 

Using Gaussian elimination, the operation count is 480 
( N -  2) multiplications-additions for eq (48) disregarding 
the evaluations of the B matrix. In  the case of the finite- 
difference formulas [eq (49)], the count is 198(p-4) 
multiplications-additions for the corrector alone. Numeri- 
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TABLE 9.-Maximum deviation f r o m  the standard solution 

Galerkin solution 

No. of basis functions 
time step (min) 

6(15) 126) M(2.5) 

Hr - ~ _ _ _ _ _ _ - - -  

~~ 

10 1.040-3 1.030-4 3.75D-5 
20 3.06ZI-3 5.220-4 1 . 5 2 0 4  
30 7.010-3 2.560-3 6.930-4 
40 1.580-2 5.950-3 1.800-3 
60 2.640-2 7.700-3 3.240-3 

Finite-difference solution 

No. of mesh points 
time step (min) 

9(15) 156) 25(2.5) 

-___ ____ 

4.990-3 1.150-3 2.14I)-4 
1.060-2 4.160-3 1.370-3 
1.880-2 7.850-3 4.090-3 
3.06&2 1.660-2 7.780-3 
3.881)-2 2.750-2 1.180-2 

cal experiments were carried out using both methods for 
initial conditions u(z ,  0 )  = 13.65 sin(27rz/L) m/s and 
h (2, 0 )  =9184 m. Again, both methodswereable topreserve 
the available energy very well. Results from these experi- 
ments are compared with the “standard” solution obtained 
by using 36 basis functions and a time step of 0.625 min. 
Table 9 shows the maximum deviations from the standard 
height solution a t  L/2 normalized by the initial height for 
each 10-hr period. We note that, for comparable amounts 
of computation, the Galerkin results are in closer agree- 
ment with the standard solution than are the corre- 
sponding finite-difference solutions. 

8. CONCLUSIONS 

We have demonstrated that the Galerkin method com- 
bined with piecewise, cubic, Hermite basis functions can 
be efficiently applied to both linear and nonlinear wave 
equations. We have shown experimentally that, for the 
same accuracy requirement, the Galerkin procedure needs 
less computation than the corresponding finite-diff erence 
method. This, in turn, means less computer storage for 
the Galerkin method. In addition, the Galerkin procedure 
presented here produces snioo th, global approximations 
to the solutions of eq (1) and (2) and their first spatial 
derivatives. 

It is proper to mention that eq (10) and (43) apply 
equally well to nonuniform node spacings. The generation 
of coefficient matrices A, B, and C and the solution of eq 
(19) and (47) would present no more difficulty in the non- 
uniform case than in the uniform case. Such computations 
are currently under investigation. 

The major disadvantage of the Galerkin procedure is 
that it is more difficult to program for a computer. Kow- 
ever, in view of the advantages listed above, we feel that 
it is a viable alternative to finite-difference schemes. 
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